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Abstract
1.	 Species distribution models (SDMs) are a valuable statistical approach for both 
understanding species distributions and identifying potential impacts of environ-
mental changes or management decisions to species, but multiple SDMs for the 
same species in a region can create confusion in decision‐making processes.

2.	 One solution is to create ensembles (i.e. combinations) of predictions from exist-
ing SDMs. However, creating ensembles can be challenging if the predictions were 
made at different spatial resolutions, using different data sources, or with differ-
ent prediction value types (e.g. abundance and probability of occurrence).

3.	 We present esdm, an r package that allows users to create an ensemble of SDM 
predictions overlaid onto a single base geometry. These predictions can be eval-
uated (e.g. through among‐model uncertainty or AUC, TSS and RMSE metrics), 
mapped, and exported. esdm includes a built‐in GUI created using the r package 
shiny, which makes the package accessible to non‐r users.

4.	 We provide an overview of esdm functionality and use esdm to create an ensem-
ble of predictions from three blue whale Balaenoptera musculus SDMs for the 
California Current Ecosystem.
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1  | INTRODUC TION

Species distribution models (SDMs; i.e. habitat‐based occurrence 
models or ecological niche models) characterize the relationship 
between spatially and temporally explicit species observations and 
environmental data. SDMs are widely used to predict species dis-
tribution and abundance based on habitat covariates, and these 
predictions can be used to make conservation and management 
decisions (Elith & Leathwick, 2009; Gregr, Baumgartner, Laidre, & 
Palacios, 2013). The increased use of SDMs worldwide (Guisan et al., 
2013) has created new challenges when multiple SDMs for the same 
species in a single region produce conflicting results (Araújo & New, 
2007; Jones‐Farrand et al., 2011). Individual SDMs may identify 
unique ecological niches or suggest different management actions 
because of the strengths, biases, and limitations of each underly-
ing dataset and model algorithm (Jones‐Farrand et al., 2011). These 
issues are often difficult to reconcile and incorporate into manage-
ment decision‐making.

An ensemble (i.e. a weighted or unweighted average or combi-
nation) provides an established method for resolving differences 
between individual models and estimating uncertainty (Araújo & 
New, 2007; Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 
2009). For example, model ensembles have been widely used in 
global climate change assessments to evaluate mean predictions 
and associated uncertainties (Annan & Hargreaves, 2010; Tebaldi & 
Knutti, 2007). In addition, ensembles have been successfully used 
to model species distributions (e.g. Forney, Becker, Foley, Barlow, 
& Oleson, 2015; Grenouillet, Buisson, Casajus, & Lek, 2011; Oppel 
et al., 2012; Pikesley et al., 2013; Scales et al., 2016), although 
these studies each relied upon a single data source. The authors 
created ensembles by averaging corresponding predictions from 
SDMs generated using different model algorithms and the origi-
nal species and environmental data. Several existing software tools 
implement this method, including r packages (R Core Team, 2019) 
biomod2 (Thuiller, Georges, Engler, & Breiner, 2019) and sdm (Naimi 
& Araújo, 2016).

A different approach is needed when multiple data sources exist. 
Integrated analyses, such as a Bayesian hierarchical framework, can 
be used to obtain a single, probabilistic assessment of species dis-
tributions from several original data sources (e.g. Golding & Purse, 
2016; Hefley & Hooten, 2016). However, this approach is not always 
practical for general use because it requires extensive statistical 

expertise and is generally time‐consuming and computationally chal-
lenging. Simpler methods for combining information from multiple 
data sources exist (e.g. Merow, Wilson, & Jetz, 2017; Pacifici et al., 
2017), but still require the original data sources. If original data are 
unavailable, SDM predictions derived from these original data may 
be the only accessible information for a particular region. Combining 
or reconciling these predictions can be difficult, particularly if they 
were created using different methods or at different spatial resolu-
tions (but see Sansom, Wilson, Caldow, & Bolton, 2018 for methods 
comparing prediction maps from different sources).

For example, multiple predictions from blue whale Balaenoptera 
musculus SDMs for the California Current Ecosystem (CCE) have 
been published (Becker et al., 2016; Hazen et al., 2017; Redfern  
et al., 2017), although some of the underlying datasets are not publicly 
available. These predictions were created at several spatial resolu-
tions, in various coordinate systems, and using different data sources, 
habitat covariates, and modelling frameworks. In addition, the SDMs 
predicted absolute density, habitat preference, and relative density 
(e.g. density calculated without line transect correction factors; see 
Redfern et al., 2017), respectively (see Table 1 for model details).

We present esdm (Ensemble tool for predictions from Species 
Distribution Models), an r package with a built‐in graphical user in-
terface (GUI) for creating ensembles of SDM predictions. esdm allows 
users to overlay SDM predictions onto a single base geometry, cre-
ate ensembles of these overlaid predictions, and evaluate, map, and 
export predictions. It also provides several options for incorporating 
or calculating uncertainty. The information provided by this tool can 
assist users in identifying spatial uncertainties and making informed 
conservation and management decisions. esdm (v0.3.0; https​://doi.
org/10.5281/zenodo.3371754) is available on CRAN, and the GUI can 
be run locally or accessed online. esdm uses the r package sf (Pebesma, 
2018) for fast processing of spatial data, while the GUI, created using 
the r package shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2019), 
makes the tool accessible to non‐r users. In this paper, we provide an 
overview of esdm functionality and use the GUI to create and evaluate 
ensembles of predictions from the three blue whale SDMs (Table 1).

2  | e s d m  OVERVIE W

Creating ensemble predictions using esdm requires three major 
steps: (a) importing original SDM predictions, (b) overlaying the 

TA B L E  1  A summary of the individual SDMs that predicted the blue whale distributions used in the example analysis

Model citation Becker et al. (2016) Hazen et al. (2017) Redfern et al. (2017)

Abbreviation Model_B Model_H Model_R

Whale data source 1991–2009 shipboard line‐transect 
surveys

1994–2008 satellite telemetry 
data

1991–2009 shipboard line‐transect 
surveys

Modelling framework Generalized additive model (GAM) Generalized additive mixed model 
(GAMM)

Generalized additive model (GAM)

Spatial resolution 0.09° × 0.09° (~10 × 10 km2) grid 0.25° × 0.25° (~25 × 25 km2) grid 10 × 10 km2 equal‐area grid

Prediction value type Absolute density Habitat preference Relative density

https://doi.org/10.5281/zenodo.3371754
https://doi.org/10.5281/zenodo.3371754
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original predictions onto a single base geometry, and (c) creating 
ensemble predictions via a weighted or unweighted average of 
rescaled overlaid predictions. Additional steps may include evalu-
ating, mapping, or exporting predictions. Validation data can be 
read from comma‐separated value (CSV) and GIS files (shapefiles 
and file geodatabase feature classes) as either binary (i.e. species 
presence/absence) or count data. esdm allows users to calculate 
several common evaluation metrics: area under the receiver op-
erating characteristic curve (AUC; Fielding & Bell, 1997), true skill 

statistic (TSS; Allouche, Tsoar, & Kadmon, 2006), and root‐mean‐
square error (RMSE). AUC and TSS measure the discriminatory 
ability of an SDM, and can be calculated with predictions of any 
value type. RMSE, a scale‐dependent measure that requires count 
validation data, evaluates both the discriminatory ability and cal-
ibration of an SDM. Users can export ensemble predictions to 
calculate other metrics. Uncertainty associated with predictions 
(e.g. standard error values) can be imported, mapped, and used to 
weight predictions in an ensemble or calculate uncertainty values 

TA B L E  2  Brief descriptions of esdm functions; see package documentation for more details

Function Description

esdm _ gui Launch the esdm GUI

ensemble _ create Create a weighted or unweighted ensemble of SDM predictions, and calculate associated uncertainty values

ensemble _ rescale Rescale predictions using the abundance or sum to one method

evaluation _ metrics Calculate AUC, TSS, or RMSE of SDM predictions using validation data

model _ abundance Calculate the predicted abundance using SDM density predictions and the area of the corresponding prediction 
polygons

overlay _ sdm Overlay SDM predictions onto a base geometry

pts2poly _ vertices Create polygon(s) from a data frame containing the longitude and latitude coordinates of the polygon vertices

pts2poly _ centroids Create polygons from a data frame containing the longitude and latitude coordinates of a regular grid of poly-
gon centroids

F I G U R E  1  Flowchart detailing the workflow of the esdm GUI, i.e. the order in which users can access and use sections of the GUI. Grey 
ovals represent tabs within the GUI, orange squares represent files imported by users, and green arrow boxes represent files exported by 
users. Users can also load a saved GUI workspace rather than re‐importing and processing predictions during each session. In the ‘Create 
Ensemble Predictions’ tab, the user can use ensemble weights based on user inputs or metrics calculated in the ‘Evaluation Metrics’ tab. 
Additional details are provided in the text and the esdm GUI manual
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for the ensemble predictions. Ensemble uncertainty can also be 
assessed using the among‐model variance. In addition, the GUI 
allows users to create maps of predictions and additional objects, 
such as validation data or areas of human use (e.g. shipping lanes).

The esdm GUI provides esdm functionality through a user‐friendly, 
web‐based interface. Alternatively, users familiar with r can incor-
porate esdm functions in their own code (see Table 2 for function 
descriptions). Here we present a flowchart of the GUI workflow 
(Figure 1) and describe the major steps of creating ensemble 
predictions.

2.1 | Importing predictions

The esdm GUI accepts SDM predictions in several common 
formats (Figure 1) and processes them to create a ‘prediction 
polygon’ for each individual prediction value. These prediction 
polygons make up the ‘geometry’ of a set of predictions, similar 
to how individual cells make up a raster. When importing pre-
dictions from a CSV file, the provided coordinates must be WGS 
84 geographic coordinates (i.e. decimal degrees) and represent 
the centroids of a regular grid of prediction polygons. The GUI 
can also read and process predictions from GIS files (rasters, 
shapefiles, and file geodatabase feature classes), which have 
already‐defined geometries and coordinate systems. Those writ-
ing their own r code can use esdm function pts2poly _ centroids  
to convert centroid coordinates to prediction polygons and 

functions from the raster (Hijmans, 2019) and sf packages to 
import GIS files.

The GUI accepts ‘Abundance’, ‘Absolute density’, or ‘Relative 
density’ as prediction value types. Users should select ‘Relative 
density’ for value types that are proportional to density but do not 
represent an absolute abundance or density (e.g. probability of oc-
currence or habitat preference; see Aarts, Fieber, & Matthiopoulos, 
2012). The GUI allows the user to rescale these values if needed 
(described in Section 2.3 below).

2.2 | Overlaying predictions

The overlay function, overlay _ sdm, is the backbone of esdm. It over-
lays SDM predictions onto a single base geometry, transforming all 
predictions to the same spatial resolution and coordinate system 
(Figure 2). Within the GUI, users can choose which of the imported 
predictions to use as the base geometry and specify the coordinate 
system in which the overlay will be performed. They can also import 
polygons to clip or erase portions of the base geometry, such as to 
specify a study area or erase land from marine predictions.

The overlay function intersects the prediction polygons from 
an original SDM with the prediction polygons from the user‐ 
selected base geometry (i.e. base geometry polygons). It then calcu-
lates the percentage of each base geometry polygon that overlaps 
with these intersected polygons, ignoring intersected polygons 
that have missing (i.e. ‘NA’) prediction values. If this percentage 

F I G U R E  2  Schematic illustration: 
(a) The base geometry, with the blue 
outline indicating the current base 
geometry polygon. (b) The geometry 
of the SDM predictions being overlaid. 
(c) The SDM predictions overlaid onto 
the base geometry. (d) Same as (c), with 
the intersection between the overlaid 
polygons and the current base geometry 
polygon (i.e. intersected polygons) 
coloured yellow

(a) (b)

(c) (d)
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meets or exceeds the user‐specified percent overlap threshold, 
the function calculates the overlaid prediction as an area‐weighted 
average of the predictions of the intersected polygons (i.e. areal 
interpolation; Goodchild & Lam, 1980). Otherwise, the function 
assigns that base geometry polygon an overlaid prediction of 
‘NA’, thereby excluding it from any ensembles. Associated uncer-
tainty values and weights are also overlaid using an area‐weighted 
average.

2.3 | Creating ensemble predictions

2.3.1 | Rescaling different prediction value types

Overlaid predictions that have different prediction value types (e.g. 
absolute density vs. probability of occurrence), should be rescaled 
to ensure predictions do not contribute disproportionately to the 
ensemble. Users can either rescale predictions to a specified total 
abundance within the study area or, if they do not have an abun-
dance estimate, rescale predictions to sum to one. These rescal-
ing methods are inherently similar and result in ensembles with 
similar distribution patterns. However, only the abundance resca-
ling method results in an ensemble with a meaningful abundance 
estimate. If another rescaling method is desired, users can rescale 
predictions before importing them, or export and rescale overlaid 
predictions.

2.3.2 | Ensemble method

Ensembles can be created using a weighted or unweighted average 
of the rescaled predictions. Weights can be based on evaluation 
metrics (i.e. evaluation metric values, rescaled to sum to one, of the 
overlaid predictions), the inverse of the variance of the overlaid pre-
dictions, or assigned by users either for the entire study area or for 
each prediction polygon. Users can also regionally exclude predic-
tions from the ensemble if they have some a priori reason to do so 
(e.g. known biases in a specific region). esdm calculates uncertainty 
for the ensemble predictions using either the user‐specified predic-
tion uncertainties or the among‐model variance.

3  | E X AMPLE ANALYSIS

Predictions from cetacean SDMs can be used to assess the risk of 
entanglements and ship‐strikes (e.g. Redfern et al., 2013), which 
represent the largest sources of anthropogenic injury or mortal-
ity for blue whales in the CCE (Carretta et al., 2018). Becker et al. 
(2016), Hazen et al. (2017), and Redfern et al. (2017) developed mod-
els of blue whale distributions in this region (henceforth Model_B, 
Model_H, and Model_R, respectively) that can provide information 
for risk assessments. However, the predictions from these models 
differ in some areas (Figure 3), making them challenging to use for 
management purposes. We use the esdm GUI to perform an exam-
ple analysis that explores differences between the blue whale SDM 

predictions and creates an ensemble of the predictions, with associ-
ated uncertainty.

The three blue whale models differ in multiple ways (Table 1). 
Model_B predicted absolute whale densities using line‐transect sur-
vey data and 8‐day composites of predictor variables in a general-
ized additive model (GAM) framework. The predictions were made 
at a 0.09° (approximately 10  km) spatial resolution for August–
November. Model_H used whale presences and pseudoabsences, 
derived from telemetry data, in a generalized additive mixed model 
(GAMM) framework to predict monthly whale probability of occur-
rence at a 0.25° (approximately 25 km) spatial resolution. Hazen et 
al. (2017) scaled these predictions by an independent abundance 
estimate; we follow the terminology used in Hazen et al. (2017) and 
refer to the scaled predictions as habitat preference. We averaged 
the Model_H predictions from August to November to match the 
other predictions. Model_R predicted relative whale densities using 
line‐transect survey data and predictor variables, averaged from 
late July to early December, in a GAM framework at a 10‐km spatial 
resolution.

We followed the methods of Becker et al. (2016) and used the 
mean of the summer/fall blue whale predictions for 2001, 2005 
and 2008 (the years with both line transect surveys and satellite 
tracks) from each model in the example analysis. Interannual vari-
ability has been shown to be the greatest source of uncertainty 
for cetacean SDMs in this region (Becker et al., 2016), and thus 
we calculated standard errors (SEs) using the three yearly predic-
tions from each model. We imported these mean predictions into 
the GUI and created maps to compare prediction values, uncer-
tainty, and distribution patterns (Figure 3). All three models pre-
dicted high blue whale densities in the Southern California Bight 
and along the central California coast. However, the Model_H 
predictions also had high values north of 40°N, where shipboard 
survey sightings and telemetry records of blue whales have been 
infrequent (Barlow & Forney, 2007; Becker et al., 2018; Irvine et 
al., 2014).

To create overlaid predictions, we imported a study area polygon 
that spanned the CCE and loaded the GUI‐provided land polygon 
as the erasing polygon. We selected the equal area geometry of the 
Model_R predictions as the base geometry because polygon inter-
section and area calculations are most accurate in appropriate equal 
area coordinate systems. We also specified an overlap threshold of 
50 percent, meaning if less than half of a base geometry polygon 
intersected with original predictions, the polygon was excluded from 
the ensemble. The different prediction value types of the overlaid 
SDMs were rescaled using an abundance estimate of 1648 blue 
whales, which was the mean of the Model_B predicted study area 
abundance for 2001, 2005, and 2008. For the Model_H predictions, 
this rescaling follows the method used in Hazen et al. (2017) to re-
late the predictions from the GAMMs to an independent study area 
abundance.

We evaluated SDM performance by calculating AUC and TSS 
using several binary validation datasets: (a) species presence/ab-
sence points derived from survey transects (Becker et al., 2016; 71 
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presence and 7,368 absence points), (b) home ranges (90% isopleths) 
derived from 171 satellite‐tagged blue whales (Irvine et al., 2014; 
328 presence and 10,386 absence points), and (c) a combination of 
these two datasets. These validation data are not independent data, 
as the survey transects were used in Model_B and Model_R and the 
satellite telemetry data were used in Model_H. However, we are not 

aware of any independent validation datasets for blue whales that 
span the CCE. Combining these data resulted in validation data with 
at least some novel presence and absence points for all predictions.

The home ranges represent areas of high use for blue whales, as 
identified by a long‐term satellite tracking dataset (1994–2008; Irvine 
et al., 2014). To translate the home ranges into binary validation data, 

F I G U R E  3  Maps of the original predictions and associated uncertainty for Model_B (Becker et al., 2016), Model_H (Hazen et al., 2017) 
and Model_R (Redfern et al., 2017). In the top row, predictions are colour‐coded using the numerical prediction value for each SDM. In the 
middle row, the original standard error values have the same colour‐coding as the top row. In the bottom row, the original predictions are 
colour‐coded using relative percentages (i.e. percentiles). In all maps, the red line is the California Current Ecosystem study area boundary 
while the tan area represents the erasing polygon (i.e. the U.S. West Coast). For the top and middle rows, the units are whales per km2, (left 
and right panels) and habitat preference (centre panels)

TA B L E  3  Evaluation metrics, area under the receiver operating characteristic curve (AUC) and true skill statistic (TSS), for all example 
analysis predictions. The first two columns (‘AUC’ and ‘TSS’) contain metrics calculated using the combined validation dataset. Columns 
‘AUC‐LT’ and ‘TSS‐LT’ contain metrics calculated using only the line transect validation dataset, while columns ‘AUC‐HR’ and ‘TSS‐HR’ 
contain metrics calculated using only the home range validation dataset. See the example analysis section for additional details

Predictions AUC TSS AUC‐LT TSS‐LT AUC‐HR TSS‐HR

Becker et al. (2016) original 0.912 0.717 0.732 0.374 0.963 0.824

Hazen et al. (2017) original 0.734 0.414 0.620 0.284 0.772 0.471

Redfern et al. (2017) original 0.919 0.756 0.684 0.290 0.980 0.882

Becker et al. (2016) overlaid 0.916 0.742 0.732 0.380 0.967 0.856

Hazen et al. (2017) overlaid 0.735 0.406 0.620 0.286 0.772 0.460

Redfern et al. (2017) overlaid 0.919 0.756 0.684 0.290 0.980 0.882

Ensemble – unweighted 0.915 0.772 0.699 0.345 0.972 0.888

Ensemble – AUC‐based weights 0.917 0.777 0.703 0.349 0.973 0.893

Ensemble – TSS‐based weights 0.920 0.785 0.708 0.352 0.975 0.900

Ensemble – variance‐based weights 0.888 0.670 0.713 0.344 0.936 0.764

F I G U R E  4  Maps of an unweighted ensemble of the overlaid predictions, the among‐model standard error (SE) of the ensemble 
predictions, and the associated coefficient of variation (CV). The tan area represents the U.S. West Coast. The units are whales per km2
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we assumed that greater home range overlap indicates a higher like-
lihood of whale presence. The home ranges for all whales spanned 
most of the CCE, making it unrealistic for individual home ranges 
to indicate presence. Consequently, we used cut‐off values for the 
number of overlapping home ranges to define presence and absence 
points. We performed a sensitivity analysis to identify cut‐off values 
that maximized the AUC values of the overlaid SDM predictions. We 
defined the centroid of each base geometry polygon as a presence 
if it intersected with the home ranges of at least twenty whales, and 
an absence for the home ranges of nine or fewer whales. Points that 
intersected with ten to nineteen home ranges were not included in 
the validation data.

We calculated evaluation metrics using all three validation data-
sets to determine whether different predictions performed better 
with different validation datasets (i.e. the line transect or satellite 
telemetry data). The AUC and TSS values for the original and over-
laid predictions were similar across validation datasets (Table 3), 
confirming that the overlay conserved the predicted distributions. 
Model_B and Model_R predictions had higher AUC and TSS val-
ues than Model_H predictions for all validation datasets (Table 3). 
However, the metrics indicated fair performance for the Model_H 
predictions and these predictions were included in all ensembles.

We created ensembles using several weighting methods: equal 
weights (i.e. unweighted), AUC‐based weights (as in Oppel et al., 

F I G U R E  5  Maps of the ensemble 
created with weights based on TSS and 
associated uncertainty. In the top row, 
the prediction and standard error (SE) 
values are both colour‐coded using the 
same numerical scale (whales per km2). 
In the bottom row, the predictions are 
colour‐coded using relative percentages 
(i.e. percentiles) and the right‐most map 
includes the presence points from the 
combined validation dataset as black dots. 
The tan area represents the U.S. West 
Coast
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2012), TSS‐based weights (as in Scales et al., 2016), and weights 
calculated as the inverse of the prediction variance. The among‐
model uncertainty of the unweighted ensemble allowed us to ex-
amine spatial agreement between the predictions (Figure 4). We 
found relative agreement between the overlaid predictions south 
of 40°N, particularly in areas of high prediction values along the 
California coast and in the Southern California Bight. However, 
the ensemble uncertainty values were greater north of 40°N 
where only the Model_H predictions were high, suggesting that 
the northern ensemble predictions should be used with caution. 
The ensemble created using TSS‐based weights had the highest 
evaluation metrics of the ensemble predictions, and mostly higher 
AUC and TSS scores than the original predictions (Table 3). Its dis-
tribution patterns also visually matched known blue whale habitat 
(Calambokidis et al., 2015; Figure 5), and thus we considered it the 
‘best’ ensemble for this example analysis.

4  | DISCUSSION

Using the esdm GUI, we successfully created an ensemble of mean 
blue whale predictions from Becker et al. (2016), Hazen et al. (2017), 
and Redfern et al. (2017) despite their different spatial resolutions, 
data sources, and prediction value types. The best ensemble predic-
tions identified known blue whale habitat in the CCE, while gener-
ally improving evaluation metrics and minimizing biases associated 
with any single SDM. Researchers are frequently updating and im-
proving SDMs (e.g. new blue whale models have been published by 
Becker et al., 2018, Abrahms et al., 2019, and Palacios et al., 2019 
since we undertook our example analysis). Consequently, we do not 
intend our results to be considered the current best set of predic-
tions for blue whales in the CCE. Instead, we present esdm as a tool 
for creating and evaluating ensembles of SDM predictions for any 
species in a timely, straightforward and robust manner. This tool can 
allow managers and practitioners to avoid potentially ambiguous 
choices between models, and instead make more informed, science‐
based decisions.

The example analysis demonstrates the utility of esdm and pro-
vides a framework and guidelines for esdm users. These guidelines 
are important because ensemble predictions are not inherently bet-
ter than the original predictions; ensemble quality is dependent on 
sensible inputs and informed user choices when creating the ensem-
ble (Araújo & New, 2007). For example, ensembles can minimize the 
biases of individual SDMs by averaging predictions across SDMs. 
However, creating an ensemble of predictions with similar biases 
will result in a biased ensemble, and thus an ensemble should incor-
porate predictions from SDMs that rely on different methods and 
data sources. In addition, esdm provides several ensemble methods 
because there is no consensus best method (Araújo & New, 2007; 
see Dormann et al., 2018 for an in‐depth discussion of weighting 
schemes). An unweighted average is useful when determining rea-
sonable weights is impractical, such as in a data‐poor region. A 
weighted average allows users that know biases a priori, e.g. through 

evaluation metrics or expert knowledge, to specify the contribution 
of each set of predictions to the ensemble.

When used properly, ensembles reduce implicit uncertainty (e.g. 
model type or data source) by averaging predictions made using 
different model types or data sources (Jones‐Farrand et al., 2011). 
However, esdm also offers several ways to incorporate explicit uncer-
tainty (e.g. the standard error of model predictions) when creating 
an ensemble. For instance, ensemble weights based on original pre-
diction uncertainty reduce the contribution of predictions with high 
uncertainty to an ensemble. However, this feature should only be 
used with comparable uncertainty values; if a model underestimates 
uncertainty, then its predictions will contribute disproportionality 
to an ensemble. In addition, esdm users can estimate among‐model 
uncertainty to identify areas of spatial agreement and disagreement 
between the predictions, which can indicate regions of an ensemble 
with higher or lower levels of precision.

Conservation and management decisions often have short 
timelines, making it difficult to conduct new studies. esdm allows 
decision‐makers to quickly create an ensemble of SDM predictions 
using simple methods (Gregr, Palacios, Thompson, & Chan, 2019; 
Ward, Holmes, Thorson, & Collen, 2014). To create a meaningful 
ensemble, users must choose sensible original predictions and an 
appropriate ensemble method. For less obvious decisions, such as 
choosing a base geometry or deciding between AUC‐based and 
TSS‐based weights, esdm provides a user‐friendly tool for exam-
ining the sensitivity of an ensemble to user decisions. While it 
is important that all choices be realistic and ecologically sound, 
these sensitivity analyses enable users to better understand the 
underlying uncertainties in species distribution patterns and allow 
for informed decision‐making.
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